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Some of the statistical characteristics of the breakdown coefficient, defined as 
the ratio of averages over different spatial regions of positive variables charac- 
terizing the fine structure and internal intermittency in high Reynolds number 
turbulence, have been investigated using experimental data for the streamwise 
velocity derivative au/at measured in an atmospheric boundary layer. The 
assumptions and predictions of the hypothesis of scale similarity developed by 
Novikov and by Gurvich & Yaglom do not adequately describe or predict the 
statistical characteristics of the breakdown coefficient qr,l of the square of the 
streamwise velocity derivative. Systematic variations in the measured probability 
densities and consistent variations in the measured moments show that the 
assumption that the probability density of the breakdown coefficient is a func- 
tion only of the scale ratio is not satisfied. The small positive correlation between 
adjoint values of qr,l and measurements of higher moments indicate that the 
assumption that the probability densities for adjoint values of qr,z are statistically 
independent is also not satisfied. The moments of qT,l do not have the simple 
power-law character that is a consequence of scale similarity. 

As the scale ratio l/r changes, the probability density of qr,l evolves from a 
sharply peaked, highly negatively skewed density for large values of the scale 
ratio to a very symmetrical distribution when the scale ratio is equal to two, 
and then to a highly positively skewed density as the scale ratio approaches one. 
There is a considerable effect of heterogeneity on the values of the higher 
moments, and a small but measurable effect on the meanvalue. The moments are 
roughly symmetrical functions of the displacement of the shorter segment from 
the centre of the larger one, with a minimum value when the shorter segment is 
centrally located within the larger one. 

1. Introduction 
The significance of the ratio of the energy dissipation in a turbulent flow 

averaged over two different adjoint volumes of different size was first recognized 
by Yaglom (1966), who employed the concept to derive heuristically certain 
hypotheses for the structure of the dissipation field given by Kolmogorov (1962) 
and Obukhov (1962). These hypotheses include the prediction that the probability 
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density of the local turbulent energy dissipation and the dissipation averaged 
Over other appropriate scales should be logarithmically normal. A heuristic 
argument suggesting that the magnitude of the vorticity in regions of large dis- 
sipation will be lognormally distributed has been given by Saffmann (1970). 

Gurvich & Yaglom (1967), in an extension of Yaglom’s (1966) work, assumed 
that the analysis could be applied to any non-negative variable characteristic 
ofthe fine scales of a turbulent flow, with the resulting prediction that measurable 
quantities like (aui/axj)2 and (aO/as:,)2, the squared gradients of velocity and 
scalar fields, respectively, should be distributed lognormally. This question has 
received a good deal of experimental examination in recent years (by e.g. 
Gurvich 1966, 1967; Gurvich & Yaglom 1967; Stewart, Wilson & Burling 1970; 
Gibson, Stegen & Williams 1970; Van Atta & Chen 1970; Wyngaard & Tennekes 
1970; Frenkiel & Klebanoff 1971; Kuo & Corrsin 1971). From the data produced 
by these studies, it appears that the measured probability densities of such non- 
negative quantities are not generally lognormal, although in some cases appre- 
ciable amplitude ranges have been found over which lognormality is a good 
approximation. Related studies by Kholmyansky (1970), Chen (1971) and 
Gibson & Masiello (1972) indicate that the probability densities of the spatial 
averages of such variables can be more nearly lognormal if the averaging length 
is chosen appropriately. 

In  an attempt to find more general laws for the structure of the intermittent 
dissipation field, by employing somewhat less restrictive assumptions than those 
which lead to lognormality of all non-negative variables, Novikov (1969, 1971) 
extended Gurvich & Yaglom’s (1967) ideas to investigate and predict some of 
the statistical properties of the breakdown coefficient, which is the ratio of the 
averages of a non-negative quantity over two volumes or averaging lengths of 
different size. Novikov obtained, under certain assumptions, universal laws, in- 
dependent of the large scale of the turbulent field, which are applicable to the 
statistical characteristics of the breakdown coefficients. Novikov noted that, 
at that time, available experimental data onintermittency related only to spectra, 
probability densities, etc., of the values of the averaged or unaveraged non- 
negative variables, but not to the breakdown coefficients themselves, for which 
one may expect universal laws under much less restrictive assumptions. The 
purpose of the present work is to investigate some of the statistical characteristics 
of the breakdown coefficients, using experimental data for the time derivative 
of the streamwise velocity &/at obtained in a high Reynolds number atmospheric 
boundary layer, and to discuss and compare the results obtained with respect to 
Novikov’s theoretical predictions. 

The atmospheric data employed, which were very kindly furnished to us in 
analog form by Dr J.C.Wyngaard of the Air Force Cambridge Research 
Laboratories, were the same as those used in a previous study of Wyngaard & 
Pao (1972)) in which certain quantities characteristic of the unaveraged fine 
structure of the turbulence, including skewness, kurtosis and power spectra of 
the velocity derivative or its square, were calculated and their behaviour com- 
pared with the predictions of the refined Kolmogorov theory as modified by 
Kolmogorov (1962), Obukhov (1962)) Yaglom (1966), Gurvich & Yaglom (1967) 
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and Novikov (1965). The persent work thus directly complements and extends the 
results of this earlier study. 

2. Theoretical relations 
Similarity concepts have proved fairly useful in dealing with the simplest 

statistical properties of fluid turbulence. If the set of definitive parameters upon 
which the statistical characteristics of the quantity under investigation is 
assumed known, then important relationships, such as those derived for spectra 
and structure functions by Kolmogorov (1941) and Obukhov (1941)) can be 
obtained. However, it is not always possible to guess the definitive parameters 
a priori, and these parameters may differ for different statistical characteristics. 
In  some problems, it is natural to assume that the statistical characteristics of 
the field have a definite similarity when the transition is made from one set of 
scales to another, provided that it is expected that a similarinteraction mechanism 
is dominant throughout the range of scales of interest. This typezof similarity, 
in contrast to similarity with respect to parameters, Novikov calls scale similarity. 
Here, we shall briefly describe the theoretical results of Novikov (1969, 1971) to 
be compared with our data in 5 4. 

Novikov considers a non-negative random function y ( x )  (in our:case the square 
of the spatial derivative of the streamwise velocity (a~/ax)~) that is statistically 
homogeneous and isotropic for spatial length scales less than a certain external 
scale L. A one-dimensional process of this type is investigated for ease of com- 
parison with experimental work, in which it is common practice to deal mainly 
with one-dimensional characteristics of the random field. Novikov singles out 
three segments along x inserted in one another with the lengths r < p < I, and 
considers the ratio of the values of the functions y(x) averaged over these seg- 
ments. This ratio is called the breakdown coefficient qr,z, where 

q,,(h,x) = y,(x’)/y,(x) (r < 11, (1) 

The inequality for h means that the smaller segment is included in the larger one. 
The probability densities of the qr,z for a homogeneous field y(.) depend upon 

I and r,  and, in general, upon h, since the joint probability density for y,(x’) and 
yz(x)  and therefore the correlation between these two quantities may depend on h. 
The moments of the qr,, are defined as 

a & - ,  1, h) = (qKdh7 4). (2) 

The dependence on h defines the non-homogeneity of the breakdown. Novikov 
suggests that it would be desirable to investigate experimentally the non- 
homogeneity of breakdown, first of all the dependence upon h of the mean value 
of the breakdown coefficient. 

As an example of this non-homogeneity, Novikov considered a first-order 
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Markov process of non-negative quantities y(k) ( E ,  . . . , I ,  2,3,  . . .) with probability 
density W(y) and transition probability 

P (y (k+ l ) )y (E) )  = as (y (k+ l ) -y (k ) )+ ( I - a )W(y(k+ l ) )  (0 < a  < 1). 

For the case of r = 1 and Z = 3, one has 

3y(k + 2h) 
% 3 ( h 7  = y(k- 1) + y(k) + y(k+ 1 ) ’  

and 

where h = - Q, 0, or Q. Novikov shows that a,( 1,3, h) is an even function of h 
with a minimum value for h = 0, and that the degree of non-homogeneity 
defined by al(1,3,Q) - a,(l, 3 , O )  does not exceed & for arbitrary W(y). More 
generally, for higher moments we find that 

a p u ,  3, h) = <aE3(h, k) ) ,  

o G a p ( i , 3 , ~ ) - a p ( i , 3 , 0 )  G 3~(2*-1)/2p+3. 

Novikov defines conditions for scale similarity of the qT,z in the interval of 
scales L > b > r > I,, where I ,  is a microscale defined by the molecular diffusion 
coefficient. According to Novikov & Stewart (1964), I, may differ from the usual 
Kolmorogov microscale 7 = (v3/e)a (where B is the average energy dissipation 
rate per unit mass of fluid and v is the kinematic viscosity) by some power of 
the Reynolds number. The two conditions are that (i) the probability density of 
qr,l depends only upon the scale ratio Z/r and h, and (ii) two sequential breakdown 
coefficients qr,p and qp,z having the same h are statistically independent. From 
these conditions and (2) it  follows that all moments of the breakdown co- 
efficient 

a p ( q . 7  h) = ( q W 7  3)) (3) 

u*(Z/r, h) = ( Z / r ) b y  (4) 

must have a power-law variation with l / r :  

where 

and 

If the non-homogeneity of breakdown (dependence on h)  is disregarded, then 

pp 6 p+p-2  (P 2 2) ,  (6) 
p I = O ,  Q < p , ~ p <  1, 

where p is the coefficient introduced by Kolmogorov (1962). 
Novikov also finds, using (5), that the requirements of scale similarity are not 

only sufficient but also necessary in order that the moments have a power-law 
dependence on Z/r, and that (5) also ensures fulfillment of the Carleman condition 
(see e.g. Prohorov & Rozanov 1967), which is sufficient for the probability dis- 
tribution of qr,t to be uniquely determined by its moments ap(Z/r,h). Further- 
more, he shows that the breakdown coefficient has a lognormal probability 
distribution in the limiting case of In (Z/r) 3 00, a result which appears consistent 
with the hypothesis of Gurvich & Yaglom (1967) that the probability density 
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of the unaveraged square of variables characteristic of the h e  scales of the 
turbulence is lognormal. 

Using a superscript asterisk to indicate quantities related to this limiting 
lognormal distribution only, the corresponding values of ,up are 

,u; = 1/2P[(P - 1) @.,* - 2Pl) + 2P.T1, (7) 

(8 )  where 

and K~ and K~ are the mean value and variance of the logarithm of the breakdown 
coefficient. Since K~ > 0, it follows from (8) that ,u.,*-2,uf > 0. As shown by 
Novikov, the quadratic dependence of the exponent ,up upon the order p of 
the moment contradicts condition ( 5 ) ,  at least for sufficiently large p. This means 
that, although the distribution of the subdivision coefficient tends toward the 
lognormal distribution, the moments do not tend towards the expressions which 
result from the limiting distribution. Thus, the true distribution is uniquely 
determined by its moments, but these moments cannot be calculated on the 
basis of the limiting lognormal distribution, which is not uniquely determined 
by its moments. According to Orszag (1970), this non-uniqueness renders the 
lognormal distribution incompatible with deductive theories of turbulence based 
on moment equations. 

The conditions of scale similarity are formaIly very similar to the assumptions 
employed by Gurvich & Yaglom (1967) in a heutristic development of the log- 
normal probability density for the energy dissipation e. If we let y = E ,  and 
l /r  = v*, where v is a volume ratio instead of a length ratio, then qr,l is interpreted 
as the ratio of the energy dissipation averaged over two volumes of ratio v. 
Yaglom imagined this subdivision to be carried out j times, and assumed that 
(i) the probability densities of the qr,l were mutually independent for different 
values of j, and (ii) the probability density of qr,l was the same for all j and de- 
pended only on Zlr. Yaglom & Gurvich then employed the conditional probability 
density P(yrl yl) to predict that the probability density of yn for sufficiently largej 
is lognormal, independent of the value of n. Novikov's analysis does not employ 
the arguments requiring the conditional probability density and is not concerned 
with the probability density of yn, but only with that of the ratio qr,E. No 
specific form is predicted by Novikov for this probability density for arbitrary 
values of l/r, except in the limiting case of llr -+ 00. 

2d In (ZIT) = 2 ~ ,  + I C ~ ,  ,u: In (I/.) = 2 ( 4  + K ~ ) ,  

3. Data acquisition and analysis 
The data were obtained from a modest hot-wire experiment carried out during 

the much more extensive atmospheric surface-layer measurements programme 
described by Haugen et al. (1971). Single hot wires, 5 microns in diameter and 
1-2 mm long, were operated in the linearized constant-temperature mode (DISA 
55DO5-15 units) at  heights z = 5-66 m and 11.3 m above a horizontally homo- 
geneous Kansas prairie. The mean velocity U was 3.78 m s-l at z = 5.66 m and 
4.47 m s-1 at z = 11-3 m. The Kolmogorov microscale 7 was 0.08 ern a t  z = 5.66 m 
and 0.087 cm at z = 11.3 m. Streamwise velocity derivatives au/at were obtained 
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FIGURE ~ ( c c ) .  For legend see facing page. 

from four-pole Butterworth filters (Wyngaard & Lumley 1967), which differen- 
tiate and low-pass filter (24 db per octave) to eliminate high-frequency noise. 

The previous studies of Haugen et al. (1971), Wyngaard & Pao (1972) and 
Tennekes & Wyngaard (1972) provide further details of the data acquisition 
and estimates of the accuracy of the data. With the aid of Taylor’s (1938) 
hypothesis of a ‘frozen’ turbulent structure, the temporal fluctuations were 
interpreted as convected streamwise spatial variations (i.e. &/at = - U aulax). 
By assuming that velocities and velocity derivatives are uncorrelated and that 
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FIGVRE 1. (a) Dependence of a,, momenta of qr,$, on h, relative position of r and 1. lir = 2. 
0,1/7 = 290; A, 580, z = 5.66m. ( b )  Dependence of a, on h. 11. = 8. O,l/7 = 580; a, 2320, 

z = 5.66m; A ,  2522, z = 11.3m. 

the various velocity derivatives are related as in isotropic turbulence, Hekestad 
(1965) found that for large Reynolds numbers 

((au/at)2) = uz{(aula~)z) (I + (u~ ) /U ;J~+  2{~2)1U2 + 2 ( ~ 2 ) 1 d ~ ) .  

For the velocity fluctuation levels during these runs 

({u2) N (v2} + (w2) -N 0*025U2) 
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the difference between ( ( 8 ~ ] 8 t ) ~ )  and ((a~]ax)~) is of the order of 7.5%. How- 
ever, since only ratios of averaged squared derivatives were used in the final 
computations, the correction term inside the brackets ( ) essentially cancels out, 
so that the shortcomings of Taylor’s hypothesis can probably be neglected for 
the present analysis. According to the results of Wyngaard & Pao (1972), the 
dissipation overestimate due to the temperature fluctuations was about 2 - 3 %. 
Calculated spectral attenuation due to wire length was about I0 % at Icy = 1.5, 
where the spectral contribution to ((&/at)) is negligibly small, and the data need 
no correction on this account. These analog data were then later played back in 
the laboratory at the Department of Applied Mechanics and Engineering 
Sciences, UCSD, and sampled with a I2 bit analog to digital converter at  a sample 
rate of 4172 samples per second. The digital data were then processed at UCSD 
with a CDC 3600 computer. The digital data, which were proportional to the 
time derivative of the longitudinal fluctuating component of the turbulent 
velocity, were squared, averaged over the appropriate number and group of 
samples corresponding tovarious values of l,p, rand h. The breakdown coefficients 
qr,l, the ratios of the averaged quantities, are independent of the calibration 
constant relating the digital data to &/at. The new time series for the n;,l were 
then used to  compute the probability densities of the qr,E, the moments up(@-, h), 
and other statistical quantities. Final results were based on 819 200 data samples, 
except for the largest averaging lengths (Z/y 2 2 320), for which twice this number 
of samples were used. 

4. Results and discussion 
4.1. The effects of heterogeneity 

The influence of variation of the parameter h, or the effect of heterogeneity, was 
first examined for the present data by calculating the values of the moments 
uP(Z/r, h) for fixed values of Z/r and for various values of h and 1. The value h = 0 
corresponds to the case when the smaller averaging segment is centrally located 
within the larger segment, while the limiting cases h = & + correspond to choosing 
the smaller segment to lie at  the ends of the larger segment. Typical results are 
shown in figure 1. For l/r = 2, the total variation of al, the mean value of qr,t, 
over the full range of h( - $ 6 h < + $) is only 2-3 yo. The relative influence of 
heterogeneity increases as the order of the moment increases. For z = 5.66m, 
the to td  variations of a2, u3 and a4 over the full range of h are about 7 yo, 14 yo 
and 22 yo, respectively. For all moments, the degree of heterogeneity is less than 
the maximum value for the first-order Markov process given in 5 2. All moments 
have a minimum near h = 0 and the variation around h = 0 is fairly symmetrical. 
Thus, qualitatively, the effect of heterogeneity is like that given by the first- 
order Markov process model used as an example by Novikov. A s  shown in figure 1 } 
these effects are qualitatively the same for other values of l/r and other vertical 
heights above the ground. Because of the relatively strong dependence of the 
higher moments on the value of h, it became clear that any systematic comparison 
with the theory, which neglects the effect of varying h, would have to be done for 
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FIGURE 2. First and second moments, a, and a,, as a function of Z for fixed values of Z/r. 
h = 0. Au. data in figures 2-15 are for z = 5.66m, h = 0, unless otherwise specified. a,: 0,  
2 < l/r < 64. a,: A, l /T = 2; 0 , 4 ;  V, 8; 0, 16; 0, 32; A,  64. 

Pl 
FIGURE 3. Normalized third moment a,/a, (ZIT = 4640) as a function of I for fixed values of 
Z/r. a ,  Z / v  = 2, a3 (117 = 4640) = 1.20; 0,4, 1.67; V, 8,2.38; 0, 16,3.83; 0 ,32,5.82;  A, 64, 
9.39. 
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FIGURE 4. Normalized fourth moment a4(l)/a, ( l /r  = 4640) as 8 function of I for fixed values 
of+. 4, Z/r = 2, a4 (l/r = 4640) = 1.50; 0, 4, 2.67; 0, 8 ,  5.16; 0, 16, 12.63; 0, 32, 26.0; 
A, 64, 58.4. 

fixed values of h. Since the rate of variation with h was a minimum at or near 
h = 0 ,  most further detailed calculations were done with the value of h set equal 
to zero. All data in figures 2-15 are for h = 0 and z = 5-66m unless specified 
otherwise. 

4.2. Comparison with the hypotheses and consequences of scale similarity 

The first condition of scale similarity requires that the probability density of 
q7,1 depend only upon the scale ratio l/r. Consequently, all moments would aIso 
depend only upon llr, independent of 1 in the region of scale similarity. To test 
this consequence for the data, the moments ap up t o  fourth order were computed 
for h = 0 and for various values of l/r. These results are plotted against 1 in 
figures 2-4. As shown in figure 2, a, is very nearly constant (varying by only 
about I yo) for a large range of 1 in which the scale similarity theory is applicable 
(say for 5 cm < 1 < 3 m if L is chosen as one-half the vertical height z, an upper 
limit for locally isotropic scales suggested by the measurements of Van Atta & 
Chen (1970)), and for the entire range of 1/r (from two t o  sixty-four). The value 
of a, is nearly independent of the value of 1/r. Thus from this simple test, one 
would be tempted to expect that the first condition of scale similarity was 
satisfied. However, the degree of dependence of the ap on 1 increases as p in- 
creases. For l /r  in the range from two to four, the total variation of a2 is only 
about 5-10 % over the same range of 1. The small variation of a2 suggests that 
to this order a region of scale similarity shouId be expected. However, for l/r = 64, 
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rilnr,c 

FIGURE 5. Probability densities of qp,t for various values of r l l .  l/r = 290. -, l / r  = 32; 
0, 16; A, 8; A, 4; 0, 2 ;  u, 1.4066; 0 ,  1.185; 0, 1.123; 8 ,  1.076; -*-, 1.0407. 

the variation is about 30 yo and no restricted range of scale similarity is suggested 
by the data. The ranges of variation in a3 and a4 become progressively larger, 
approaching an order of magnitude over the range considered for the extreme 
case of 1/r = 64. The latter data have been normalized with their values at  the 
largest 1, to present them with sufficient resolution in a single plot. There is 
a tendency for the ap for p 2 2 to become less dependent on I for the smaller 
values of 1, and there is some suggestion in the data that for intermediate values 
of l/r maximum values may be reached for values of 117 between 70 and lo2, 
with the maxima shifting to larger values of I as I/r increases. This range was not 
completely covered in the computations for the larger values of l/r because the 
small number of samples occurring within the length r with the present sampling 
rate made such computations less reliable. However, the apparent maxima which 
do occur are close to the lower end of the range of possible scale similarity, while 
the moments change most quickly near the middle of the range of possible scale 
similarity. 

These results clearly indicate that the first hypothesis of scale similarity is 
35-2 
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FIGURE 6. Probability densities of qr,L for various values of I for fixed l/r = 2. -, 117 = 36.2; 
0, 72.5; A, 145; m, 290; a, 580; 0, l i60.  

not satisfied for our data, i.e. the probability density of qr,l is not a function only 
of the single variable Zlr. To investigate this point in detail, the probability 
densities for a number of values of r ,  p and I were computed and compared. 

The shape of the probability density of qr,l was found to  be strongly dependent 
on the value of Ilr. Typical data in figure 5 show that for large l l r  the density is 
sharply peaked near the origin, while for decreasing values of 11r the peak moves 
to larger values of qr,r and decreases rapidly in size. The probability density 
becomes nearly symmetrical and the peak reaches its minimum value for l / r  = 2. 
AS l/r-+ 1, the probability density approaches a one-sided delta function at  
r/lqr,l = 1, as it does at  the origin for 6lr -+ 03. We note that the large range of 
11' is de-emphasized in the figures by normalization of the ordinate with l l r .  
Similar behaviour was found for other values of 1. 

For the value of 61' = 2, the probability density was very symmetrical for all 
values of 6, as shown in figure 6. As I increased there was a systematic evolution 
of the density from a flattened distribution with negative curvature everywhere 
to a more sharply peaked truncated Gaussian-like distribution with positive 
curvature in the tails. This symmetrical behaviour of the density was found only 
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FIGURE 7. Probability density of qr,i for various values of 1 for fixed llr = 4. 0 ,  117 = 72.5; 
A, 145; 0, 290; V, 580; 0 ,  1160; A, 2320. 

for the value of 1/r = 2 .  According to Onsager (1949) and Novikov (1971), this 
value may have special significance for the spectral energy transfer process. They 
argue that, in view of the quadratic nonlinearity of the Navier-Stokes equations 
and resulting convolution of Fourier components of the velocity, the energy 
tends to distribute itself across the spectrum in a cascade mode with a decrease 
in scale by a factor of two at each step. However, there appears to be no rigorous 
argument to support this idea. The increase in the values of the higher moments 
for l /r  = 2 and decreasing I noted in figures 2-4 is due mainly to the increase in 
P(q, , )  in the tail of the probability density for large qr,l as H decreases (i.e. to an 
increase in the relative number of large values of qr,l). 

As Z/r increased (l /r  > 4), the probability densities for different values of I 
became more similar, both in magnitude and shape. For fixed l{r, as 1 increased, 
the magnitude of the peak in the probability density increased and the peak 
shifted to larger values of qr,l, while the tail of the density for large values of qr,l 
decreased slowly but monotonically in magnitude as 1 increased. As illustrated 
in the example given in figure 7, these changes were often so small, especially 
in the tail of the density for large qr,l, that they could not be readily discerned on 
linear plots of the densities, although the behaviour was clear from the tabulated 
data. In  terms of the normalized variables used in the figures, the magnitudes of 
these changes were roughly the same for all values of 1. To examine more closely 
the behaviour in the tail for large qr,t, which gives the main contribution to the 



550 C. W.  Van Atta and T. T. Yeh 

I I I I 
n 1 

0.08 - 

0.07 - 

0.06 - 

- 
i g 0'05 - 

m i  
M 
", 0.04 - 
w . 
v 

0.03 - 

0.02 - 

0.01 - 

0 0.2 0.4 0.6 0.8 1.0 

?%,z 

FIGURE 8. Probability densities of third moments of q7,z for Z/r = 4. -, Z/q = 290; 0 ,  580; 
A, 1160; 0 , 2 3 2 0 .  

moments, plots of (l/r)l-Pq~iP(qr,z) against r/lqr,z with p = 2, 3 and 4, which 
emphasize the behaviour in the tail, were useful. The example of such a com- 
parison shown in figure 8 clearly shows the decrease in the value of the probability 
density for large qr,l as 1 increases. This behaviour is also consistent with the 
increase in the values of up for fixed l/r and decreasing 1 in figures 2-4. For these 
cases, however, the main contribution to the changes comes only from the tail 
of the distribution of large values of qT,l (i.e. from an increase in the relative 
number of very large values of qr,I). 

These same data were also plotted in the form of 6 = lnq,,, against P(E), 
where = (6- (<))/ac and uTb is the variance of [, to compare them with the data 
of Gibson & Masiello (1972). The data for their calculations, which were performed 
for the case l /r  = 2 only, were obtained at a height of x = 30 m in the atmospheric 
boundary layer over the ocean. As shown in figure 9, when plotted this way the 
systematic changes in the tails and near the peak become much less pronounced, 
and the direction of the trends with changing 1 are reversed from those in the 
previous figures because of the transformation of variables. This behaviour can 
also be detected in the data of Gibson & Masiello, with the exception of that for 
their smallest I ,  which does not follow the trend. Otherwise, there is fairly good 
agreement with the present data. 

If all the probability densities were identical for a given value of l/r, then 
according to Yaglom's analysis the value of ,u = p2(0) would be constant and 
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given by p = vlng ,/ln ( l /r) .  Not surprisingly, the values of p computed in this 
way from the present data and shown in figure 10 are a strong function of I ,  
varying from 0.6 to 0.15 and decreasing very rapidly for the smaller values of 
I as 1 increases. The computed value of p also depends strongly on the value of 
l/r, but for each fixed l/r the same trend with 1 is observed. As shown in figure 10, 
the data of Gibson & Masiello show the same trend, again with the exception of 
that for the smallest value of 1. The rapid variation of the computed p with 1 
for the smallest values of 1 explains the origin of the widely scattered values of p 
obtained by Gibson & Masiello and shows that the apparent agreement of their 
average value of p = 0.49 & 0.2 with values of p 2: 0.5 obtained from spectra of 
(8u/at)2, and by other means, is misleading. 

The fact that the computed p is a strong function of both llr and 1 is evidence 
that the probability densities of the qrpl for different values o f j  are far from being 
similar enough to even approximately satisfy Yaglom's assumption (discussed 
in 8 2) that the qr,z are identically distributed for different values of j .  

The second condition of scale similarity requires that two sequential break- 
down coefficients qr,p and qp,l having the same value of h be statistically in- 
dependent. For two statistically independent variables the joint probability 
density P ( q r ,  p,  qpJ is equal to the product of the individual probability densities, 
or P ( q r , p , q p , z )  = P(q,,,) P ( q p J .  The moments then satisfy the relation 

(q:pq;,1) = ( C p )  <q;,lh 

or, for m = n = p ,  ap(r, 1) = (qKl) = a,(r,p) a,(p, 1). Thus, a necessary condition 
for statistical independence is that the ratio f, = aJr, l ) / a , ( Y ,  p)  a,(p, 1) be equal 
to one for all p .  Moments up to fourth order were calculated to test whether 
this condition was satisfied. As shown in figures 11-13, the value of fi is fairly 
close to one, ranging from 1-01 to 1-03 over the complete range of averaging 
lengths. This behaviour, along with the small values of the correlation coefficient 
described below, suggests that to this order qr,p and qp,z are nearly statistically 
independent. However, this test of the moments apparently becomes more 
sensitive for the higher moments, which exhibit strong systematic variations 
with 1. The magnitude of variation of fp for the higher moments for fixed E/r is 
a monotonically increasing function of p .  As shown in figure 11, for fixed values 
of l/r = 64, r / y  = 72.5 and 117 = 4640, f4 can become as large as 1.4 N 1.5. The 
values of f2, f3 and f4 reach a maximum for p/T equal to about 600, and decrease 
monotonically toward each end of the p interval. This behaviour suggests that 
Qr, p and qp,l are most nearly independent when the value of p is close to either 
r or 1, and that the strongest dependence occurs when p is roughly equal to the 
geometric mean of r and 1 (((72.5) (4640)fi = 580). This was also suggested by 
measurements of the cross-correlation coefficient R for the variables qr,p and 
qp,z, i.e. 

R = ( (q r ,p - (q r ,p ) )  (qp,z- ( q p , l ) ) ) / ( ( P r , p - ( q r , p ) ) 2 ) ' ( ( ~ p , z - ( q p , d ) 2 ) ' -  

From the results in figure 11, we see that R is rather small, varying over a range 
from + 0-04 to + 0.08. The correlation is a strong function ofp, exhibiting roughly 
the same qualitative behaviour as that of the higher momentsf,, with a maximum 
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value for intermediate values of p. The small values of R do not by themselves 
imply independence, as uncorrelated variables are not necessarily independent, 
but the small values of R are consistent with the fact that for fist-order moments 
the implied degree of statistical dependence of qr,p and qp,l is very weak. However, 
the behaviour of the correlation coefficient and that of the higher moments for 
the present case appear to be related, and their dependence, however small, is 
accentuated in the higher-order moments. 

In  some other types of comparisons, such a simple correspondence did not 
emerge. If the ratio l/p is set equal to p/r ,then, as l/p increases, one would expect 
the correlation coefficient to decrease, since the smaller averaging segments 
occupy relatively less sampling volume than the larger segments. The results 
of such a computation for r/q = 72.5 are shown in figure 12. R decreases smoothly 
from about + 0-13 to + 0.062 as l /p  increases from 2 to 8 (a range of 64 in l / r ) .  
The corresponding f,, however, in most cases exhibit a general increase as I/p 
increases. Similar results were found when 1 was varied with the values of p 
and r kept fixed. Results for r/q = 145 and p / q  = 290 are shown in figure 13. 
R decreases from 0.18 to 0.088 as 117 increases from 580 to 4640. The corre- 
sponding f,, however, change very little over the same interval. 

Although no simple general relation was found between the values of the 
correlation coefficient and deviations of the moments from the values expected 
for independent probability densities, contributions to the non-self-similar be- 
haviour of the moments from the lack of statistical independence appear to be 
significant, especially for the higher-order moments. 
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FIGURE 15. Measuredvalues ofslope oflna,against ln(Z/r). O,Z/y = 290; 0 , 1 1 6 0 ;  A, 4640. 
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Since the conditions for scale similarity are not satisfied by the present data, 
we cannot expect to find that the moments of the fractionation coefficient obey 
the simple relations which are a consequence of scale similarity. It is of interest 
to examine their behaviour, however, to  see how it is affected by the lack of 
scale similarity. 

The computed moments for h = 0 are shown as a function of l / r  for fixed 
values of 1 in figure 14. From these doubly logarithmic plots we see that in most 
cases the moments are not the simple power-law functions of l /r  required by 
scale similarity. For intermediate values of 1, the slopes of the higher moments 
increase with increasing l / r ,  but for the smallest and largest values of 1 the slope 
(on the log plot) is fairly constant. However, even when approximate power-law 
behaviour is observed, the extrapolation of the slope does not pass through the 
point up = 1 for l/r = 1 as it must for scale similarity. 

For corresponding values of 1, the data for the two heights, z = 5 6 6 m  and 
11.3 m, lie remarkably close together, so close, in fact, that the differences cannot 
be seen in the figures. Thus, although the moments are not of the form appropriate 
for scale similarity, they have a well-defined characteristic shape which is not 
a sensitive function of the height above the surface. 

From figure 14 we note that for p > 2 the slope of the moment curves as a 
function of l/r decreases slowly but systematically as 1 increases. The behaviour 
reflects the decrease in the values of the moments as 1 increases for constant l/r 
noted in figures 2-4. If, despite these difficulties, the moments are fitted with 
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straight lines with emphasis on the points for intermediate values of Z/r, the 
resulting slopes are as shown in figure 15. The small spread in the values is caused 
by the systematic variation with 1. The values of p p  obtained this way increase 
with increasingp and are all well below the upper bounds for scale similarity given 
by ( 5 )  and (6), $ 2 .  Comparing with the summary of previous measurements of 
pp given in Novikov (1971, table I), the value of pz = p II 0.15 obtained from the 
breakdown coefficient is considerably smaller than values obtained from data 
on other statistical parameters, for which p ranges from 0.35 to 0.51. This 
difference emphasizes once again the great sensitivity of the values of p obtained 
to the method used to calculate it, a sensitivity noted previously in connexion 
with the data in figure 10. We know that it is incorrect in principle to obtain the 
pp from the moments in the present case, just as it is incorrect to obtain p from 
the formula p = r.~&~~,~Jln (Z/r), because the fundamental assumptions underlying 
both (4) and the relation p = ~ g ( ~ ~ , ~ J l n  (Z/r) are not satisfied. In  the present case 
it is clear that we should not place great significance on the values obtained. The 
case for or against the validity of methods for deriving values of p from other 
measurements is not as clear. For example, the assumptions underlying the deter- 
mination of p from spectra of E are based on assumptions about the probability 
density of E itself, but E cannot be measured. Even if we assume that the hypotheses 
about E are satisfied, the spectrum of E cannot be measured either, and it is 
finally necessary to make the additional assumption that spectra of quantities 
like (a~/ax)~ can be used. 

As noted by Novikov, no other suitable data are available to compare with 
the values of ,up for p > 2. Lacking suitable data, Novikov tentatively compared 
his results with values of the exponents from power laws fitted to the moments of 
squared velocity derivatives averaged over various lengths (the quantities y,(x)) 
measured by Kholmyansky (1970), and with values deduced from higher moments 
of unaveraged velocity derivatives measured by Stewart et al. (1970). However, 
Novikov notes that the scale similarity theory does not apply to the moments 
measured by Kholmyansky and by Stewart et al., remarking that, although the 
latter data could be interpreted in terms of the breakdown coefficient using the 
transition to the limit 1 -+ 00, this would violate the restricted range of scale 
similarity. The values of p3 and p4 deduced from these data are roughly 30-50 yo 
larger than those obtained from the breakdown coefficient. 

5. Conclusions 
The assumptions and predictions of the hypothesis of scale similarity do not 

adequately describe or predict the statistical characteristics of the fractionation 
coefficient qr,l of the square of the streamwise velocity derivative measured in an 
atmospheric boundary layer. Systematic variations in the measured probability 
densities and consistent variations in the measured moments show that the 
assumption, that the probability density of the fractionation coefficient is a 
function only of the scale ratio, is not satisfied. The small positive correlation 
between adjoint values of qr,l and measurements of higher moments indicate that 
the assumption that the probability densities for adjoint values of qr,l are 
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statistically independent is also not satisfied. The moments of qr,l do not have the 
simple power-law character that is a consequence of scale similarity. 

As the scale ratio l /r changes, the probability density of qr,l evolves from a 
sharply peaked, highly negatively skewed density for large values of the scale 
ratio to a very symmetrical distribution when the scale ratio is equal to two, 
and then to a highly positively skewed density as the scale ratio approaches one. 
There is a considerable effect of heterogeneity on the values of the higher moments, 
and a small but measurable effect on the lowest moment (mean value). The 
moments are roughly symmetrical functions of the displacement of the shorter 
segment from the centre of the larger one, with a minimum value when the 
shorter segment is centrally located within the larger one. 

The data used here were gathered by the Boundary Layer Branch of the 
Air Force Cambridge Research Laboratories, Bedford, Massachusetts. We 
especially thank Dr J. C. Wyngaard of APCRL for his loan of the analog tape 
and encouragement to undertake the analysis. At UCSD the work was supported 
by NSF grant GK-33799, and by the Advanced Research Projects Agency of 
the Department of Defense, monitored by the U.S. Army Research Office, 
Durham, under contract DAHC04-72-C-0037. 
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